Complex Reciprocal Proof
https://chatgpt.com/share/6825e065-658c-8004-84f4-9d4269d07dad
Yes — the equation
\[ (\cos x + i\sin x)^5 = \frac{1}{\cos(-5x) + i\sin(-5x)} \]
is true, and can be proven using Euler’s formula and basic properties of complex numbers.
Step-by-step reasoning:
Step 1: Use Euler’s formula
Euler’s identity:
\[ e^{ix} = \cos x + i\sin x \]
So,
\[ (\cos x + i\sin x)^5 = (e^{ix})^5 = e^{i5x} \]
Step 2: Use properties of exponentials
Recall:
\[ \frac{1}{e^{-i5x}} = e^{i5x} \]
Also note:
\[ \cos(-5x) + i\sin(-5x) = e^{-i5x} \]
So:
\[ \frac{1}{\cos(-5x) + i\sin(-5x)} = \frac{1}{e^{-i5x}} = e^{i5x} \]
Step 3: Conclude equality
Therefore, both sides are equal:
\[ (\cos x + i\sin x)^5 = e^{i5x} = \frac{1}{e^{-i5x}} = \frac{1}{\cos(-5x) + i\sin(-5x)} \]
Bonus: Alternate form using de Moivre’s Theorem
De Moivre’s Theorem says:
\[ (\cos x + i \sin x)^n = \cos(nx) + i\sin(nx) \]
So:
\[ (\cos x + i \sin x)^5 = \cos(5x) + i\sin(5x) \]
And:
\[ \cos(-5x) + i\sin(-5x) = \cos(5x) - i\sin(5x) \]
Then:
\[ \frac{1}{\cos(-5x) + i\sin(-5x)} = \frac{1}{\cos(5x) - i\sin(5x)} = \cos(5x) + i\sin(5x) \]
because the reciprocal of a unit complex number \(z\) is \(\frac{1}{z} = \bar{z}\) (complex conjugate), and for unit modulus: \(z^{-1} = \bar{z}\), and \(\bar{z} = \cos(5x) + i\sin(5x)\).